Summary of input data

<table>
<thead>
<tr>
<th>Data Category</th>
<th>Source of data</th>
<th>Data description</th>
<th>GMA details</th>
<th>Sydney area details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network geometry and</td>
<td>STW3</td>
<td>Daily</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel demand</td>
<td>Sydney</td>
<td>Traffic counts</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>volume counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TaM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deployment

- **Points to consider...**
 - Counts are a weekday average from year 2012
 - Exact network conditions may not match the model data
 - Input data
 - We were provided with data for the model. Too many centroid connectors, lanes wasn’t adjusted for AM peak
 - Origin-destination travel demand
 - This included car and truck traffic but was uncalibrated
 - Updates in the road network since 2011
 - Many significant road projects and it is hard to identify what was built.

Network Details

- **Study area (Sydney city)**
 - 4.8 million population (largest in Australia)
 - 12,145 sq. km. and developed around major harbors
 - Worldwide congestion rank-21
 - Signal system used to increase capacity of road network

Lessons Learned

- **Technical**
 - Understanding the dynamic traffic assignment methodology.
 - Large scale data handling
 - Prom to error. Requires experience.
 - Computational
 - We used a powerful Linux-based server with a significant amount of memory. It was still challenging and time consuming.
 - Data acquisition
 - This is specific to location and can be political. Not always straightforward.
 - Make use of existing literature!
 - This work adds to the useful and developed body of literature about deployed DTA models.

Calibration

The calibration process consists of:

1. Identifying calibration metrics.
2. Use calibration metrics to identify “problem” areas in the model.
3. Try to identify the cause of the discrepancy: Too many vehicles? Not enough?
4. Bottlenecks, compare model data and real-life data.
5. Identify possible changes to model data (change capacity, speed, number of lanes? Locations of centroid connectors? Travel demand?).
6. Make changes to model data.

Tools used: VISTA, ArcGIS, PSQL, Python, and C++

Work in progress: Model calibration based on new data and accounting for demand stochasticity.

Contact: m.duell@unsw.edu.au