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Abstract 1 

One common criticism of traditional traffic network assignment is the lack of observable 2 

equilibrium.  It is easy to confirm that traffic networks vary continually due to uncertain 3 

travel demand, traffic capacity, or individual behaviour. However, in the traditional 4 

deterministic user equilibrium assignment, users select paths to minimize their travel time 5 

based on a single known demand value.  Even with such issues, equilibrium models have 6 

persisted in a planning context due to their important mathematical properties (e.g., solution 7 

consistency and convergence). What is needed are new network models which directly 8 

account for existing variability while still maintaining the beneficial properties of traditional 9 

traffic equilibrium models; ideally, new models which better explain variation but are still as 10 

comparably simple and practical as existing methods.  To address the aforementioned need, 11 

this paper examines strategic network assignment models which ensure that users recognize 12 

the variations in travel time to their destination and rationally choose routes while 13 

considering all possible demand scenarios in a known distribution. The set of chosen routes 14 

are then followed regardless of the specific travel demand on any given day. The strategic 15 

assignment model therefore produces link flows which will not result in a state of network 16 

equilibrium under specific demand realizations. The proposed strategic assignment problem 17 

is analytically formulated, and the link proportions and the variance in travel time for the 18 

links are analytically derived.  Numerical analysis is conducted, and results are compared 19 

with two deterministic user equilibrium assignment models, all evaluated with variable 20 

demand.  21 

  22 
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1. INTRODUCTION AND LITERATURE REVIEW  1 

Traffic network equilibrium remains a critical component in the transportation planning 2 

process.  This is in spite of the commonly noted fact that network equilibrium is not routinely 3 

observed in practice.  Even with the noted issues of equilibrium, it remains a relatively simple 4 

model that captures the inherent self-centred nature of travellers in a mathematically 5 

consistent manner with critical convergence properties.  Numerous attempts have been made 6 

for improved behavioural traffic assignment models including Stochastic User Equilibrium 7 

and many others.  Often, though, the resulting models are either substantially more time 8 

consuming, mathematically complex, or neglect critical elements of the underlying causal 9 

uncertainty (i.e., demand or capacity uncertainty).   10 

It is well known that the most observable stochastic element, link travel time reliability, 11 

is an important measure of network performance; preferences over variability of travel time 12 

have been verified Small et al. (1). But, more broadly, variability of travel time in a network 13 

can be attributed to variability in demand (2-6), supply (7-9), route choice behaviour (10-14) 14 

and departure time choice behaviour (15-17). 15 

It is due to these underlying variations that equilibrium traffic flows are rarely 16 

observed, which as noted, has led to criticism of existing traffic assignment models. Watling 17 

and Hazelmen (18) provide an in-depth discussion on the definition of equilibrium, and also 18 

identify this issue, and the existence of observable equilibrium.  In addition, the new concept 19 

of dis-equilibrium has become an important area of research, in spite of the mathematical and 20 

computational complexity of the problem when stated in the most general (and abstract) 21 

terms.  22 

Various reasons have been provided in response to the lack of observed equilibrium 23 

conditions. Claims were made that travel decisions are affected by learning from previous 24 
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days, leading to potentially unstable conditions; users adapt on a day-to-day basis, and their 1 

adapting mechanism may undermine the notions of a stable equilibrium (19). Another source 2 

of daily variation may be a result of supply side reductions in capacity, like that resulting 3 

from traffic incidents or adverse weather conditions (20-21).  4 

Traditionally, as noted earlier, the uncertainty in user perception in travel time has been 5 

addressed extensively through Stochastic User Equilibrium models (22-24). This paper 6 

instead proposes strategic based assignment models which fundamentally veer away from 7 

this notion, and describes equilibrium as travellers assigning themselves proportionally to 8 

routes so as to reduce their expected travel time, where the uncertainty can be a manifestation 9 

of demand or capacity (for purposes of demonstration constrained to only demand in this 10 

paper). In strategic assignment approaches, the resulting model does not attempt to optimize 11 

path (or link) flow directly, but rather to discern strategies (i.e., path flow proportions) that 12 

are applied across the realizations of some uncertain variable. 13 

Variations of strategic approaches have been applied successfully by Chriqui and 14 

Robillard (25), Nguyen and Pallottino (26) as well as Spiess and Florian (27) albeit to the 15 

modelling of urban transit networks and often in an adaptive manner (whereas this paper 16 

adopts a simpler non-adaptive view to maintain ease of implementation). In the transit 17 

approach, users select a line from a subset of the available lines and board the first incoming 18 

vehicle from the selected line.  Marcotte and Nguyen (28) considered this strategy framework 19 

non-ideal for transit, since the sets of attractive lines in the transit application are unordered. 20 

They used the mixed strategy approach to solve equilibrium for traffic networks with rigid 21 

finite capacities.  Hamdouch et al (19) expanded this method to a dynamic formulation in 22 

which again users follow strategies based on preferences, while meeting the first in first out 23 

constraints.  24 
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The goal of the proposed strategic approach is to equilibrate based on an expected 1 

condition as opposed to a deterministic cost.  To capture this behaviour a strategic route 2 

assignment model is proposed which ensures that users recognize the variations in travel time 3 

to their destination and rationally choose routes while considering all possible demand 4 

scenarios in a known distribution. The set of chosen routes are then followed regardless of the 5 

realized travel demand on any given day. The strategic assignment model therefore produces 6 

link flows which will not result in a state of network equilibrium under particular demand 7 

realizations. The proposed strategic assignment problem is mathematically formulated, and 8 

the link proportions and the variance in travel time for the links are analytically derived.  For 9 

the current analysis, we focus on a strategic equilibrium in the presence of day-to-day 10 

fluctuations in travel demand. This work does not consider demand fluctuations that result 11 

from incidents, degraded links, or other non-recurring phenomena.  12 

In section 2 the three assignment models are described and mathematically formulated. 13 

Section 3 provides numerical results comparing the models’ performance for a test network, 14 

and the results are further validated for a medium size network. Extensions to the multiple 15 

OD version of the model are also discussed. Section 4 concludes the paper. 16 

2. PROBLEM FORMULATION 17 

Three assignment models are considered; the proposed strategic user equilibrium (StrUE) 18 

assignment model is compared against two deterministic user equilibrium based assignment 19 

models: i) Deterministic User Equilibrium with Perfect Information (DUE PI) and ii) 20 

Deterministic User Equilibrium with Fixed Proportions (DUE FP). Each model is described 21 

in detail and mathematically formulated in the following section. 22 

 23 
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2.1 DUE with Perfect Information (DUE PI)  1 

The first model, included for comparison purposes, is a traditional deterministic user 2 

equilibrium assignment model which assumes users have perfect information on the state of 3 

the network (i.e. the day-to-day demand value) and select routes to minimize their travel time 4 

based on this knowledge. For the DUE PI model the assignment patterns result in a state of 5 

network equilibrium each day. Because the actual demand varies day-to-day the resultant 6 

assignment pattern (i.e. link flow volumes and link travel times) will also vary day-to-day.  7 

Consider a stochastic transportation network G = (N, A, D,  ) consisting of a set of 8 

nodes N; a set of directed arcs A; a demand matrix D with |N| rows and columns, mapping the 9 

demand for travel from every node to every other node. In this work a single origin 10 

destination case was analysed, where, R and S represent the origin and destination 11 

respectively. Let   denote the demand distribution and     be a realization of one 12 

particular demand from the distribution.    
  denotes the value of one particular demand 13 

realization between origin R  and destination S . Let     represent the set of paths 14 

connecting origin R and destination S  and        is an index for one path. Let A denote the 15 

set of all arcs and     is an index for one particular arc in the network.     
   represents the 16 

total flow on path k connecting origin R and destination S in demand realization    . Let 17 

  
  represent the total link flow on link     under demand realization     and   

  
 
 is 18 

the link path incidence variable. Let   
 represent the vector set of feasible link flows for 19 

demand realization    .  20 

      
            

     
     

  
     

     
  

     
    

       [1] 21 

Let (.)T represent the vector of link cost functions for all links in the network. The link 22 

cost function may be any function that defines the relationship between the number of users 23 

traveling a particular link and the cost to travel that particular link (cost can be travel time, 24 
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money, etc). While any link cost function could be substituted, a common link-cost function 1 

used in transportation literature and practice is the Bureau of Public Roads (BPR) formulation 2 

(U.S. Department of Commerce, 1964), and is the function used in this paper for 3 

demonstration purposes. The BPR function is defined below:  4 

             
  

 
 
 

        [2] 5 

Where t is link travel time, tf is free-flow travel time, v is hourly volume, C is hourly 6 

capacity, and and kare parameters that depend on link geometry. In this work, we seek a 7 

collection of flow vectors V


 for user equilibrium link flow that depend on the demand 8 

realization, and satisfy the following inequality: 9 

        
 
                            [3] 10 

The constraint represents the set of equilibrium link flows given demand realization 11 

and link cost functions T(.). The model output specifies the link level flows   
 , and link 12 

travel times   
  for each demand realization. Monte Carlo sampling was implemented to 13 

select an origin-destination (O-D) specific demand realization chosen from a lognormal travel 14 

demand distribution with a known mean and variance. For each demand realization the link 15 

flows for a DUE were computed using a traditional Frank-Wolfe algorithm. Based on the 16 

resultant assignment pattern for each demand realization, system performance measures are 17 

calculated.       
     represents a function of total system travel time for every realization 18 

    which is computed based on the resultant link travel flows and link travel costs. This 19 

was repeated for multiple iterations, and the expected value and variance of the system 20 

performance functions computed. 21 

 22 
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2.2 Strategic User Equilibrium (StrUE) 1 

In the proposed strategic user equilibrium (StrUE) assignment users choose routes so as to 2 

minimize their expected travel time between an origin and destination. Using similar notation 3 

to the DUE PI model, we define path proportions    on path i, where path i belongs to the set 4 

   , as the percent of OD demand between R and S which choose to travel on route i. 5 

           
            

              [4] 6 

The proportion of flow on a link is the sum of the path proportions that are incident on 7 

the link, and are described below. 8 

                 
        

         
           [5] 9 

StrUE involves each user choosing a path so as to minimize their expected cost. A 10 

Wardrop’s first principle states that equilibrium is reached when the expected travel costs are 11 

equal on all used paths, and this common cost is less than the actual cost on any unused path. 12 

An equilibrium strategy p is then a solution of the nonlinear complementarity problem: 13 

                   Where,     and                 [6] 14 

Let (.)T represent the vector of link cost functions for all links in the network. Ti(pD) denotes 15 

the link cost function along path i. The BPR function (equation 2) applied in the StrUE model 16 

is defined in equation 7: 17 

              
   

 
 
 

        [7] 18 

The BPR function can be written in the reduced form:  19 

             
           [8] 20 
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Where      ,        and   
  

 
. Therefore, the expected travel time is 1 

                  
    

  
             [9] 2 

                
   ,           [10] 3 

Where Mk is the k
th

 moment of the demand distribution which has a pdf     . Replacing 4 

Equation 10 in Equation 6 we get 5 

          
           Where     and       

         [11] 6 

Equation 11 can be re-written as a variational inequality  7 

                                   [12] 8 

The novelty of the proposed model is the assumption that the users’ behaviour is 9 

dictated by travel strategies to minimize their expected travel time over the demand 10 

distribution, where the demand distribution captures the randomness associated with day-to-11 

day variation. 12 

Given the strategies it is also possible to analytically characterize the variance of travel 13 

time on a route. The variance on links is due to uncertainty in demand, and can be used to 14 

measure reliability. The variance on a link can be written as   15 

                      
            

      [13] 16 

Using Equation 8 and equation 13 we get: 17 

          
     

    
              

       [14] 18 

         
    

    
      

        
        [15] 19 
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        [16] 1 

Equation 16 characterizes the variance that is observed in the network due to day-to-day 2 

fluctuations in travel demand, assuming users behave based on a predetermined strategy.  3 

In the construct of the StrUE model path proportions are dependent on the distribution 4 

of the demand, and not any particular demand realization. For a given demand distribution 5 

the expected cost of travelling on a link is given by Equation 10. These link cost functions are 6 

used to solve for the proportion of flows travelling on each link. Once again the Frank-Wolfe 7 

algorithm is used with the modified link cost function. For any given demand realization, the 8 

demand is assigned based on the a priori computed link proportions. The same set of demand 9 

realizations sampled in the DUE PI evaluation was used to evaluate the expected network 10 

performance and variance under the StrUE model.  11 

It is important to recognize that for StrUE model the path (and link) proportions will 12 

not change day-to-day. However, the actual link flow volumes will vary as a function of the 13 

realized demand (since the link flows would be the product of the realized demand and the 14 

link proportions), meaning equilibrium conditions are unlikely to be met for many demand 15 

realizations. This outcome is consistent with real world traffic networks where equilibrium 16 

conditions are not observed on a day-to-day basis. One of the strengths of this approach is 17 

that the uncertainty in travel times and flows can be analytically tied back to the demand 18 

uncertainty.  19 

2.3 DUE with Fixed Proportions (DUE FP) 20 

The final assignment model evaluated in this work is a Deterministic Equilibrium Model with 21 

fixed proportions (DUE FP). This model is a hybrid of the previous two models. In the DUE 22 

FP users are assumed to know only the expected demand (average demand) value and do not 23 

care about the distribution, compared with the StrUE model where the users are assumed to 24 
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know the distribution of the demand and make their choices based on expected costs, while in 1 

the DUE PI model users are assumed to know the actual demand value on any given day.  2 

In DUE FP users equilibrate once simply based on a single deterministic demand value 3 

equal to the expected demand and then determine the resultant path proportions based on the 4 

assignment. These path proportions are used to determine the flows based on day-to-day 5 

realized demand. Like the StrUE model, the DUE FP path proportions will not change day-6 

to-day, but the actual path flows and link flows will vary under different demand realizations. 7 

It is trivial to show that the variance in cost for a DUE FP is the same as equation 16, but the 8 

path proportions could be significantly different, because the proportions are determined 9 

using a different link cost. Qualitatively it should be expected that in uncongested conditions 10 

or tight demand distributions with low variance the DUE FP should result in similar results to 11 

StrUE, but would diverge when there is congestion and the variances are high.  12 

The same set of demand realizations sampled in the DUE PI and StrUE evaluation was 13 

used to evaluate the expected network performance and variance under the DUE FP model. 14 

Once again user equilibrium conditions will likely not be met on any given day.  15 

In summary the three equilibrium-based assignment models evaluated in this work are 16 

differentiated as follows: 17 

1. DUE PI: Users equilibrate each day to minimize their travel time based on the 18 

actual realized demand. A given user’s path may change day-to-day. 19 

2. DUE FP: Users equilibrate to minimize their travel time based on a single value 20 

of demand equal to the expected demand, resulting in a set of path assignments. 21 

These path assignments are used to determine the path proportions. For a given 22 

demand realization, the traffic is distributed based on the path proportions. Each 23 

user follows this assigned path strategy day-to-day independent of the demand 24 

realization. 25 

3. StrUE: Users equilibrate to minimize their expected travel time based on a known 26 

demand distribution curve, resulting in a set of path proportion assignments. Each 27 

user follows this assigned path strategy day-to-day independent of the demand 28 

realization.   29 
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To evaluate each model three performance measures were considered: i) total system 1 

travel time (TSTT), ii) link flows, and iii) link travel times (link TT). For a given demand 2 

distribution curve 1000 randomly selected demand scenarios generated through Monte Carlo 3 

sampling were used to compute the expected value and variance for each performance 4 

measure. In addition the link TT variance computed from the StrUE simulation model is 5 

compared with the analytical link TT variances calculated for the same demand sample set.  6 

3. NUMERICAL RESULTS 7 

This section compares the three assignment models in terms of expected system level and 8 

link level performance measures. The results are based on the sample network depicted in 9 

figure 1. The network has 6 nodes and 9 links, with a single O-D - node 1 is the origin and 10 

node 6 is the destination. There are 7 possible paths from the origin to the destination. The 11 

numbers next to the links are the link lengths in miles. The capacity for each link is 50 and 12 

the free flow speed for each link is 60 mph. The BPR parameters  and  are 0.15 and 4, 13 

respectively.  14 

For the test network shown in Figure 1 the resultant UE network conditions for a 15 

deterministic demand of 100 are provided. The flow units are vehicles and the travel time is 16 

in minutes. The same set of link flows and total system travel times are computed by all three 17 

assignment models under deterministic demand.  18 

 19 
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 1 
(a)        (b)   2 

  3 

FIGURE 1  (a) Test network and (b) system performance under deterministic 4 

demand of 100, including link flows, link costs and TSTT 5 

When demand variability is introduced the resultant link flow volumes (and travel 6 

times) may deviate from the deterministic set of flows (and travel times). The proposed 7 

StrUE model incorporate demand uncertainty into the user’s decision making process, 8 

therefore the remainder of the analysis considers only stochastic demand conditions. 9 

Specifically, the demand follows a lognormal distribution with a prescribed mean and 10 

variance. The mean, , is set to one of four values, [25, 50, 75, 100], and the set of possible 11 

variances for each expected demand value is 12 

[1/23/225/237/24representing 32 possible demand distribution curves 13 

For each distribution 1000 demand realizations were sampled from each curve for the 14 

analysis. 15 

In the following section the expected value and standard deviations of the three 16 

performance measures are illustrated. For the link-level performance measures the results are 17 

presented so as to illustrate the behaviour of the StrUE model relative to each of the DUE-18 

based model.  19 

 20 

 21 
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3.1 Expected TSTT and Variance of TSTT 1 

In figure 2.a and 2.b the expected TSTT (E[TSTT]) and standard deviation of TSTT 2 

(STD[TSTT]) computed for each model are illustrated for an expected demand of 100, and 3 

the 8 variance levels listed above. In figure 2.a the straight purple line marks the deterministic 4 

TSTT, which is less than E[TSTT] for all three models, suggesting that using a single 5 

deterministic demand value for planning purposes underestimates system performance. This 6 

finding is supported by previous research by Waller (2001) (29). Figure 2.a also illustrates a 7 

lower E[TSTT] under StrUE and DUE PI models, relative to the DUE FP model. The lower 8 

E[TSTT] should be expected under the DUE PI model because people equilibrate to 9 

minimize their experienced travel time based on the actual demand. The lower E[TSTT]  in 10 

the StrUE can be explained by the path proportion assignment which is based on minimizing 11 

expect cost. In contrast the DUE FP proportions are assigned based on a single demand value, 12 

without accounting for potential variability in demand, therefore they can be expected to 13 

underperform compared with a model that incorporates the possible demand variability into 14 

routing decisions. This is precisely the reason why the expected TSTT is lower for StrUE as 15 

compared to DUE FP highly uncertain demand values, and why the E[TSTT] for the three 16 

models is closer under lower variance.   17 

Figure 2.b illustrates roughly an 18% increase in STD[TSTT]under the StrUE and 18 

DUE FP model relative to the DUE PI model. As expected the STD[TSTT]  for the StrUE 19 

and DUE PI models diverge as the demand variability increases. The explanation is a 20 

function of the information available to the users. In the DUE PI model users react to the 21 

actual demand each day, while the StrUE and DUE FP models restrict users to their a priori 22 

defined strategy. Under these restrictions the strategies are likely to result in highly sub-23 

optimal link flows under low and high demand realizations, increasing the STD[TSTT].   24 

 25 
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 1 

(a)      (b) 2 

FIGURE 2   (a) Expected TSTT and (b) Standard Deviation of TSTT for Sample 3 

Network 4 

Results for the expected link flows and expected link travel times (and respective 5 

standard deviation) are provided in figures 3.a and 3.b for each of the three assignment 6 

models. In each plot a single performance measure is evaluated for each of the 32 demand 7 

distribution curves (defined by a mean and variance) and each assignment model (StrUE, 8 

DUE PI, or DUE FP). The performance measure is plotted for each link in the test network.  9 

3.2 Expected Link Behavior 10 

Figure 3 illustrates that all three models predict the same set of expected link flows and link 11 

travel times averaged over the 1000 demand realizations. The expected link flows and link 12 

travel times for DUE PI, DUE FP and StrUE line up perfectly. This result is expected from 13 

the DUE PI model because the average assignment patterns over a large sample size should 14 

converge to the StrUE, for which the assignment is based on expected costs. Similarly, the 15 

average assignment patterns for a DUE FP which is based on expected demand should 16 

converge to StrUE over a large sample as well. However the same linear behavior will not 17 

hold true for the standard deviations of link-level flows and travel times. 18 
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 1 

(a)      (b) 2 

FIGURE 3    Expected (a) Link Flow Volumes and (b) Link Travel Times. The x-axis 3 

represents the StrUE model results and the y-axis represents the DUE PI and DUE FP 4 

model results. 5 

3.3 Variance of Link Behavior 6 

In contrast to the expected link behaviour, the three models do not result in the same 7 

variability in link performance (see figure 4). The StrUE and DUE FP models predict similar 8 

link level variability. On the other hand link level variability for the DUE PI model differs 9 

from the StrUE model. The standard deviation of the link flow from the DUE PI model is 10 

often significantly higher or lower than the in the StrUE model (see figure 4.a). The 11 

inconsistency between models is a function of the specific link and demand distribution. 12 

From figure 4.b it is evident that the predicted link travel time variability is almost always 13 

lower for the DUE PI than the StrUE model. These discrepancies in link level variability 14 

between the StrUE and DUE PI support system level results shown in figure 2.b. 15 

 16 
(a)       (b) 17 

FIGURE 4  Standard Deviation of (a) Link Flows and (b) Link Travel Times. The x-18 

axis represents the StrUE model results and the y-axis represents the DUE PI and DUE 19 

FP model results. 20 
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The scatter behavior of the link level standard deviation for the DUE PI model relative 1 

to the StrUE model is illustrated for link 5 in the test network in figure 5. Each series 2 

corresponds to a different expected demand value (low=50, medium=75 and high=100), and 3 

each point corresponds to a specific demand curve. While the two models predict the same 4 

set of link flows and travel times on average, the StrUE model and DUE PI models predict 5 

similar link level variability for uncongested networks, but are inconsistent for congested 6 

networks.  7 

 8 

(a)      (b) 9 

FIGURE 5  Comparison of the standard deviation of Link 5 flow and travel times for 10 

the StrUE and DUE PI models 11 

In figure 6 the standard deviation of link travel times computed from the StrUE 12 

simulation model are compared with the derived analytical values (Equation 16). From figure 13 

it is evident that the analytically derived link travel time variance closely approximates the 14 

link travel time variability observed in the simulation (as evident by the fit of Y=X with an 15 

R
2
=0.99).  16 
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 1 

FIGURE 6  Comparison of simulated and analytical link travel time standard 2 

deviations for the StrUE model, for the test network 3 

3.4 Anaheim Network Analysis 4 

To demonstrate the scalability of results for StrUE to larger more realistic networks, StrUE 5 

was tested on the Anaheim planning network that was acquired from Bargera’s website on 6 

Transportation Network Test Problems (30). The network was used to compare the analytical 7 

link travel time variance predicted for StrUE with those observed through simulation.  8 

Figure 7 depicts the Anaheim planning network which contains 416 nodes and 914 9 

links. The original network had 38 nodes which were either origins or destinations. The 10 

network was converted to a single OD network through the use of super nodes. A super-11 

source node (node 1) was created and connected to all original origin nodes (nodes 3-38), 12 

with an aggregate demand equal to the sum of the original set of demands generated by each 13 

origin, which was 104,694 (). Similarly a super-sink node (node 2) was created and all 14 

original demand nodes (nodes 3-38) were connected to it. This increased the total number of 15 

links to 986. The network was run with eight different variances 16 

[1/23/225/237/24cases. For each distribution curve 100 demand 17 

realizations were sampled and evaluated. 18 
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The modified Franke-Wolfe algorithm that was used on the smaller test network 1 

earlier was used to determine the link proportions for StrUE in the larger Anaheim case. 2 

Based on the equilibrium proportions identified the link flows were determined as the product 3 

of the link proportions and the total demand. The sample variance across all flows and costs 4 

were compiled for all the cases and compared with the analytically predicted variances 5 

(Equation 16). 6 

 7 

FIGURE 7  Anaheim Network 8 

In figure 8 the standard deviation of link travel times computed from the StrUE 9 

simulation model are plotted against with the analytically derived values for the Anaheim 10 

network. Similarly to the test network the analytically derived link travel time variance 11 

closely approximates the individual link travel time variability computed from the simulation 12 

(as evident by the fit of Y=X with an R
2
=0.99). The results further validate the scalability of 13 

the proposed StrUE model and demonstrate the model’s ability to capture variability in travel 14 

time as a consequence of demand variability.  15 
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  1 

FIGURE 8  Comparison of simulated and analytical link travel time standard 2 

deviations for the StrUE model, for the Anaheim Network  3 

 4 

4. CONCLUSIONS 5 

In this work a new strategic network assignment model is proposed which incorporates some 6 

elements of day-to-day travel demand variation. The StrUE model ensures that users 7 

recognize the variations in travel time to their destination and rationally choose routes while 8 

considering all possible demand scenarios in a known distribution. The set of chosen routes 9 

are then followed regardless of the specific travel demand on any given day. The strategic 10 

assignment model therefore produces a range of non-equilibrated link flows which can be 11 

different for each demand realization; an outcome consistent with the lack of equilibrium 12 

observed day-to-day. However, the non-equilibrated flows result from a rational strategic-13 

level equilibrium (which aligns with the concepts of consistency and convergence for the 14 

expected flow/cost case, thereby still highly suitable for planning applications). Further, the 15 

proposed strategic assignment problem was analytically formulated, and empirically 16 

evaluated using a simulation model.  To gain insights into the practical differences in this 17 

new model’s behaviour, numerical analysis was conducted comparing the StrUE model with 18 
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two DUE-based assignment models, all subject to variable demand. Results from the test 1 

network demonstrated StrUE’s ability to capture network variability in terms of link and 2 

system level performance. In addition the analytically derived variance was further confirmed 3 

using the simulation model for a more realistic sub-network, Anaheim. For both the test and 4 

Anaheim network the analytical variance was validated through simulation, as evident by the 5 

R
2
=0.99.  6 

The advances presented in this paper facilitate a potentially robust area of network 7 

equilibrium research which has the potential of alleviating one of the most criticized issues in 8 

the field (the lack of observable equilibrium) while still maintaining important mathematical 9 

properties and consistent system-wide expected flows. While this paper presents the 10 

formulation for StrUE for a single OD the solution method (using a Frank-Wolfe algorithm 11 

with modified cost functions), it can be easily generalized to a multi-OD network; however 12 

theoretical properties of link proportions as related to solution consistency is beyond the 13 

scope of this paper and remains for future research. 14 

 15 

 16 

  17 

TRB 2013 Annual Meeting Paper revised from original submittal.



Dixit, Gardner and Waller  22 

REFERENCES 1 

1. Small, K.A., Winston, C., Yan, J., 2005. Uncovering the distribution of motorists_ 2 

preferences for travel time and reliability: implications for road pricing. 3 

Econometrica 73 (4), 1367–1382. 4 

2. Hanson, S., and Huff, J. 1988. Systematic Variability in Repetitious Travel. 5 

Transportation, Vol. 15, 1988, pp. 111–135. 6 

3. Pas, E. I., and Sundar, S., 1995. Intra-personal Variability in Daily Urban Travel 7 

Behavior: Some Additional Evidence. Transportation, Vol. 22, 1995, pp. 135–150. 8 

4. Axhausen, K. W., Zimmermann, A., Schonfelder, S., Rindsfuser, G. and Haupt, T., 9 

2002. Observing the Rhythms of Daily Life: A Six-Week Travel Diary. 10 

Transportation, Vol. 29, 2002, pp. 95–124. 11 

5. Richardson, A. J., 2003. Temporal Variability of Car Usage as an Input to the 12 

Design of Before and After Surveys. In Transportation Research Record: Journal of 13 

the Transportation Research Board, No. 1855, Transportation Research Board of the 14 

National Academies, Washington, D.C., 2003, pp. 112–120. 15 

6. Stopher, P., Kockleman, K., Greaves, S. P. and Clifford, E. 2008. Reducing Burden 16 

and Sample Sizes in Multiday Household Travel Surveys. Transportation Research 17 

Record: Journal of the Transportation Research Board, 18 

No. 2064, Transportation Research Board of the National Academies, Washington, 19 

D.C., 2008, pp. 12–18 20 

7. Ponzlet, M. (1996). Dynamik der Leistungsfähigkeiten von Autobahnen (Dynamics 21 

of Freeway Capacity). Schriftenreihe des Lehrstuhls fuer Verkehrswesen der Ruhr 22 

Universitaet Bochum, No. 16. Bochum. 23 

TRB 2013 Annual Meeting Paper revised from original submittal.



Dixit, Gardner and Waller  23 

8. Brilon, W., Geistefeldt, J., Regler, M.: Reliability of Freeway Traffic Flow: A 1 

stochastic Concept of Capacity, Proceedings of the 16th International Symposium 2 

on Transportation and Traffic Theory, pp. 125 – 144. 3 

9. Wu, X., Michalopoulos, P., Liu, H. X., 2010. Stochasticity of freeway operational 4 

capacity and chance-constrained ramp metering. Transportation Research Part C 18 5 

(2010) 741–756. 6 

10. Mirchandani, P., Soroush, H., 1987. Generalized traffic equilibrium with 7 

probabilistic travel times and perceptions. Transportation Science 21 (3), 133–152. 8 

11. Lo, H., Tung, Y.K., 2000. A Chance Constrained Network Capacity Model. In: 9 

Bell, M., Cassir, C. (Eds.), Reliability of Transport Networks. Research Studies 10 

Press Ltd, pp. 159–172. 11 

12. Yin, Y., Ieda, H., 2001. Assessing performance reliability of road networks under 12 

nonrecurrent congestion. Transportation Research Record 1771, 148–155. 13 

13. Gordon,A.,VanVuren,T.,Watling,D.P.,Polak,J.,Noland,R.B.,Porter,S.,Taylor,N.,20014 

1.Incorporating variable travel time effects into route choice models. In: 15 

Proceedings of the PTRC European Transport Conference (Methodological 16 

Innovations), PTRC Education and Research Services Ltd., London. 17 

14. Liu, H.X., Ban, X., Ran, B., Mirchandani, P., 2002. An analytical dynamic traffic 18 

assignment model with probabilistic travel times and perceptions. In: Paper 19 

Presented at 81st annual Transportation Research Board Meeting, Washington, DC, 20 

January 2002. 21 

15. Uchida,T.,Iida,Y.,1993.Riskassignment:anewtrafficassignmentmodelconsideringris22 

koftraveltimevariation.In: Daganzo, C.F. (Ed.), Proceedings of the 12th 23 

International Symposium on Transportation and Traffic Theory, Amsterdam, 89–24 

105. 25 

TRB 2013 Annual Meeting Paper revised from original submittal.



Dixit, Gardner and Waller  24 

16. Noland, R.B., Polak, J.W., 2002. Travel time variability: a review of theoretical and 1 

empirical issues. Transport Reviews 22 (1), 39–54. 2 

17. Noland,R.B., Small, K.A., Koskenoja, P.M., Chu, X., 1998. Simulating travel 3 

reliability. Regional Science and Urban Economics 28, 535–564. 4 

18. Watling, D., Hazelton, M. L., 2003. The Dynamics and Equilibria of Day-to-Day 5 

Assignment Models. Networks and Spatial Economics; Sep 2003; 3, 3; ProQuest 6 

Central pg. 349 7 

19. Hamdouch, Y., Marcottee, P., Nguyen, S. 2004. A Strategic Model for Dynamic 8 

Traffic Assignment. Networks and Spatial Economics, Volume 4, Number 3 9 

(2004), 291-315 10 

20. Asakura, Y., Kashiwadani, M., 1991. Road network reliability caused by daily 11 

fluctuation of traffic flow. In: Proceedings of the 19th PTRC Summer Annual 12 

Meeting, Brighton, Seminar G, pp. 73–84. 13 

21. Clark, S.D., Watling, D.P., 2002. Sensitivity analysis of the probit-based stochastic 14 

user equilibrium assignment problem. Transportation Research 36B (7), 617–635. 15 

22. Daganzo, C.F., Sheffi, Y., 1977. On stochastic models of traffic assignment. 16 

Transportation Science 11 (3), 253–274. 17 

23. Sheffi, Y., Powell, W., 1982. An algorithm for the equilibrium assignment problem 18 

with random link times. Networks 12 (2), 191–207 19 

24. Maher, M.J., Hughes, P.C., 1997. A probit-based stochastic user equilibrium 20 

assignment model. Transportation Research 31B (4), 341–345. 21 

25. Chriqui, C., Robillard, P. 1975. Common bus lines. Transportation Science. 9, 115–22 

121. 23 

26. Nguyen, S., S. Pallottino. 1988. Equilibrium traffic assignment for large scale 24 

transit network. Eur. J. Oper. Res. 37 176–186. 25 

TRB 2013 Annual Meeting Paper revised from original submittal.



Dixit, Gardner and Waller  25 

27. Spiess, H., M. Florian. 1989. Optimal strategies: A new assignment model for 1 

transit networks. Transportation Res. B 23 83–102. 2 

28. Marcotte, P., Nguyen, S., Schoeb, A., 2004.A Strategic Flow Model of Traffic 3 

Assignment in Static Capacitated Networks. Operations Research, Vol. 52, No. 2, 4 

March–April 2004, pp. 191–212 5 

29. Waller, T., Shofer, J. L., Ziliaskopoulos, A. K., 2001. Evaluation with Traffic 6 

Assignment Under Demand Uncertainty. Transportation Research Record: Journal 7 

of the Transportation Research Board, Volume 1771 / 2001, pg. 69-74 8 

30. Bargera, H., Accessed on 1 Aug, 2012, Available at: 9 

http://www.bgu.ac.il/~bargera/tntp/ 10 

 11 

TRB 2013 Annual Meeting Paper revised from original submittal.


