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Game Theoretic Model for Lane Changing: Incorporating Collision Risks 1 

ABSTRACT 2 

The study employs a Quantal Response Equilibrium framework to model lane changing 3 

manoeuvres. In a Quantal Response Equilibrium payoffs for driver actions are probabilistic, 4 

whereby drivers on average have correct beliefs about other drivers’ decisions however these 5 

beliefs are subject to error. The stochastic formulation reflects drivers having imperfect 6 

judgement or vision of others. Prior game theoretic studies in lane changing have pre-7 

eminently assumed Nash equilibrium solutions with deterministic payoffs for actions. 8 

The study method involves developing expected utility models for drivers’ merge and give-9 

way decisions. These utility models incorporate explanatory variables representing driver 10 

trajectories during a lane changing manoeuvre. The model parameters are calibrated against 11 

lane changing data at a freeway on-ramp, and estimated using a maximum likelihood 12 

estimation procedure. The calibration data used is the vehicle trajectory dataset collected 13 

under the Next Generation simulation (NGSIM) program. 14 

The study was able to develop, calibrate and test a lane changing model with a Quantal 15 

Response Equilibrium game solution. It demonstrates QRE as a suitable formulation to model 16 

interaction in driver manoeuvres, accounting for drivers’ errors in perception. Given this, the 17 

QRE interaction framework appears promising to model the efficacy of emerging V2V and 18 

V2I communication technologies which provide information to drivers to align their 19 

perceptions of stimuli with reality. 20 

 21 

Keywords: Game Theory; Quantal Response Equilibrium; Lane Changing; Risk Perception; 22 

Driver Behavior 23 
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1. INTRODUCTION  1 

In recent years, there has been an increasing focus towards using game theory to model the 2 

interdependence of manoeuvres between conflicting drivers in traffic (Barmpounakis et al., 3 

2016; Chatterjee & Davis, 2013; Elvik, 2014; Kita 1999; Liu et al. 2007; Luo et al., 2015; 4 

Meng et al. 2016; Talebpour et al. 2015; Wang et al. 2015). The game-theoretic approach 5 

assigns a utility to each combination of driver decisions instead of only their disparate 6 

individual decisions. This focus on interaction ultimately leads to further insights in traffic 7 

safety and operations, in particular the quantification of behavioural norms and moral hazards 8 

of interaction. 9 

The dominant assumption in game solutions of driver manoeuvres presented in prior 10 

literature is a mathematical Nash equilibrium of interactive behaviour. These studies include 11 

those models calibrated against data of observed field interactions (Kita 1999; Liu et al. 2007; 12 

Talebpour et al. 2015), those models with arbitrarily specified incentives for choices 13 

(Chatterjee & Davis, 2013; Meng et. al. 2016; Prentice, 1974) and purely theoretical models 14 

(Pedersen, 2003).  15 

However Nash equilibrium solutions assume drivers have correct anticipations or beliefs of 16 

other drivers’ decisions. A Quantal Response Equilibrium game solution on the other hand 17 

assumes drivers’ beliefs are correct on average, however make errors according to a 18 

probability distribution (McKelvey and Palfrey, 1995). This formulation may greater reflect 19 

real driving behaviour, as it acknowledges errors in perception arising from mistakes in 20 

judgement or having imperfect vision of others. In particular, accounting for drivers’ 21 

stochastic errors in perception may improve modelling of mean and variance in driver 22 

interactions. Dixit and Denant-Boemont (2014) showed that Strategic User Equilibrium 23 

(analogous to Quantal Response Equilibrium for route choice decisions) is able to accurately 24 
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model mean and variability in strategic route choice decisions. Outside the driving context, 1 

McKelvey and Palfrey (1995) were able to produce Quantal Response Equilibrium estimates 2 

of strategies more accurate than Nash Equilibrium estimates.  3 

Apaper by Barmpounakis et al. (2016) presents a Quantal Response Equilibrium in a 4 

sequential game abstraction for overtaking manoeuvres. However the study in this paper 5 

adopts a different approach to Barmpounakis et al. by inter-relating the decision payoff 6 

functions of game players to explicitly account for interactions. Further, when calibrating 7 

decision payoffs against observed interactions, the parameters in payoff functions for 8 

decisions are calculated simultaneously as game solutions are arrived. The authors of this 9 

paper believe it is integral to calculate game payoffs simultaneously with game solutions in 10 

order for payoffs to explicitly reflect interactions and not individual decisions. 11 

The study in this paper investigates the efficacy of a Quantal Response Equilibrium solution 12 

for lane changing manoeuvres, by first defining the game structure: a simultaneous two-13 

player, non-cooperative, non-zero sum game. Expected utility decision models for merging 14 

and give-way behaviour are accordingly developed. A probability distribution is specified for 15 

drivers’ anticipation for payoffs in the decision models; this anticipation is probabilistic in 16 

Quantal Response Equilibrium but deterministic in Nash Equilibrium.  17 

The model is calibrated and tested against a large trajectory dataset collected under the 18 

NGSIM program (Federal Highway Administration, 2006). 45 minutes of vehicle trajectory 19 

data is used, describing positional information along a section of the Interstate 80 in 20 

Emeryville, California. Moridpour et al. (2010) mentions the importance of using large 21 

trajectory datasets to improve development of lane changing models. 22 

The study focuses on merging and give-way interactions at freeway on-ramps. 23 
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Once the theoretical model is developed and data sample is prepared, the study utilises a 1 

maximum likelihood procedure to estimate the Quantal Response Equilibrium model 2 

parameters against the observed field interactions. In particular, the study allows driver 3 

decision payoff parameters to be heterogeneous across vehicle class types and traffic 4 

conditions experienced. This allows for further interaction insights for these subgroups. A 5 

fixed point algorithm is used to converge to QRE game solutions. The calibrated QRE 6 

models in the study are cross-validated against separate test datasets. 7 

 8 

2. GAME THEORETIC REPRESENTATION 9 

2.1 Type of game 10 

The lane changing interaction is modelled as a simultaneous two-player, non-cooperative, 11 

non-zero sum game. The game-theoretic studies of Kita (1999), Liu et al. (2007), Meng et. al. 12 

(2016) and Talebpour et al. (2015) likewise adopt this structure. 13 

In this study, lane changing interactions between one mainline driver and one on-ramp driver 14 

is modelled. Each driver can make either one of two manoeuvres. The on-ramp driver can 15 

choose to either ‘merge’ or ‘do not merge’, whilst the mainline driver can choose to ‘give-16 

way’ or ‘do not give-way’.  The interaction between these two drivers is modelled, as it is 17 

considered dominant over the interaction with any other surrounding vehicles (Kita, 1999). 18 

The lane changing interaction at the on-ramp is represented as a simultaneous game. That is 19 

the on-ramp and the mainline players both decide their manoeuvre at the same time. The 20 

simultaneous representation is considered because there is a limited amount of time for each 21 

player to make their decision given the stimuli provided by each other and surrounding 22 

vehicles.  23 
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 1 

FIGURE 1 Schematic representation of the Powell Street on-ramp along Interstate 80 in 2 

Emeryville California; the location of the data collection 3 

2.2 Decision timing 4 

Every instance when the longitudinal coordinate of the rear of an on-ramp vehicle passes the 5 

longitudinal coordinate of the front of an adjacent mainline lane vehicle with respect to the 6 

direction of travel, is considered as an interaction in this paper (see Figure 2). Hence the 7 

instance when the rear of the on-ramp player’s vehicle passes the front of the mainline 8 

player’s vehicle is taken as the decision time. At this time and vehicle positioning it is 9 

assumed that these conflicting drivers have already formulated anticipations of each other.  10 

Having a definition for interactions allows for a consistent calibration dataset for the decision 11 

models. The traffic conditions at the decision time are input into the lane changing decision 12 

models.  13 

 14 

FIGURE 2 Schematic representation of the interacting players. 15 

  16 
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2.3 Definition of manoeuvres 1 

Mainline player ‘give way’ and ‘do not give way’ decisions are defined based on their 2 

acceleration behaviour at the time and positioning in Figure 2; accelerations ≤ −0. 25𝑚𝑠−2 3 

are defined as ‘give way’ manoeuvres, whereas accelerations > −0.25𝑚𝑠−2 are defined as 4 

‘do not give way’ manoeuvres. The threshold value −0. 25𝑚𝑠−2 is taken instead of 0𝑚𝑠−2 to 5 

hedge against noise in acceleration values in the model calibration and verification datasets.  6 

On-ramp player ‘merge’ and ‘do not merge’ decisions are defined on whether they take the 7 

gap in front of the mainline player. This lane changing decision by on-ramp vehicles to merge 8 

or to not merge is latent in nature, hence taking the earliest interaction timing when the on-9 

ramp vehicle can physically merge in front of the mainline vehicle (as in Section 2.2) allows 10 

to account for all potential merge manoeuvres after passing the putative follower, whether 11 

they are done immediately, later, or not done. 12 

The normal form of the game is presented in Table 1. The payoff equations are a function of 13 

vehicle trajectories, and are discussed in the section following. 14 

TABLE 1 Payoff matrix for the two players 15 

[On-ramp driver payoff], {Mainline driver payoff} 16 

 

Mainline driver action 

Give-way Do not give-way 

O
n

-r
am

p
 d

ri
v
er

 

ac
ti

o
n
 

Merge 
[0],  

{𝑏0 + 𝑏2. 𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 + 𝑏3. 𝛥𝑉𝑙𝑚 + 𝑏4. 𝛥𝑉𝑜𝑚} 

[𝑎1. 𝑣𝑜𝑛𝑟𝑎𝑚𝑝
2 ],  

{𝑏1. 𝑣𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒
2 } 

Do not 

merge 

[𝑎0 + 𝑎2. 𝑑𝑜𝑛𝑟𝑎𝑚𝑝], 

{ 𝑏0 + 𝑏2. 𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 + 𝑏3. 𝛥𝑉𝑙𝑚 + 𝑏4. 𝛥𝑉𝑜𝑚} 

[𝑎0 + 𝑎2. 𝑑𝑜𝑛𝑟𝑎𝑚𝑝],  

{0} 

 17 

  18 
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3. METHODOLOGY 1 

3.1 Payoff model formulation 2 

In Quantal Response Equilibrium drivers make decisions with the lowest perceived costs. 3 

These perceptions are subject to error however, and hence drivers behave stochastically 4 

against rational expectations. 5 

The models for merge and give-way decisions in this study follow Expected Utility Theory, 6 

whereby drivers have decision utilities dependent upon expected actions of conflicting 7 

drivers. In this way payoff functions between conflicting drivers are inter-related, and 8 

interactions are explicitly accounted for. 9 

The expected utility decision models are shown in equations 1 to 4. 10 

The coefficients of the co-decision utilities are the anticipations or beliefs of the other 11 

drivers’ decisions, 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦. 𝑝𝑚𝑒𝑟𝑔𝑒 is the mainline player’s anticipation that the 12 

on-ramp player will merge, and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 is the on-ramp player’s anticipation that the 13 

mainline player will give way. The anticipations are probabilities that lie between 0 and 1 14 

inclusive: 0 ≤  𝑝𝑚𝑒𝑟𝑔𝑒 ≤ 1, 0 ≤  𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 ≤ 1.  15 

Game theoretic decision models for on-ramp player utilities: 16 

𝐸𝑈𝑚𝑒𝑟𝑔𝑒 = (1 −  𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦) × (𝑎1. 𝑣𝑜𝑛𝑟𝑎𝑚𝑝
2 )                                                                                   [1] 17 

𝐸𝑈𝑑𝑜𝑛𝑜𝑡𝑚𝑒𝑟𝑔𝑒 = 𝑎0 +  𝑎2. 𝑑𝑜𝑛𝑟𝑎𝑚𝑝                                                                                                    [2]  18 

Game theoretic decision models for mainline player utilities: 19 

𝐸𝑈𝑔𝑖𝑣𝑒𝑤𝑎𝑦 = 𝑏0 + 𝑏2. 𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 + 𝑏3. 𝛥𝑉𝑙𝑚 + 𝑏4. 𝛥𝑉𝑜𝑚                                                                [3] 20 

𝐸𝑈𝑑𝑜𝑛𝑜𝑡𝑔𝑖𝑣𝑒𝑤𝑎𝑦 = 𝑝𝑚𝑒𝑟𝑔𝑒 × (𝑏1. 𝑣𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒
2 )                                                                                     [4] 21 
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Where, 1 

 𝑣𝑜𝑛𝑟𝑎𝑚𝑝: Velocity of the on-ramp player at decision time 2 

𝑣𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒: Velocity of the mainline lane player at decision time 3 

𝛥𝑉𝑙𝑚: Velocity difference between the putative leading vehicle on the mainline and the 4 

mainline lane player, at decision time 5 

𝛥𝑉𝑜𝑚:  Velocity difference between the on-ramp player and the mainline player, at decision 6 

time 7 

𝑑𝑜𝑛𝑟𝑎𝑚𝑝: remaining distance to the end of the acceleration lane for the on-ramp player, at 8 

decision time 9 

𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒: remaining distance to the end of the acceleration lane for the mainline lane player, 10 

at decision time 11 

𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4: parameters to be estimated 12 

The above explanatory variables for player decisions have a Pearson correlation between 13 

them of less than 0.5 in the dataset, ensuring a level of independence amongst model 14 

variables. 15 

Collision risk and magnitude are characterised by the decision probabilities 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 and 16 

𝑝𝑚𝑒𝑟𝑔𝑒, displacement variable 𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 and the kinetic energy variables 𝑣𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒
2 , 𝑣𝑜𝑛𝑟𝑎𝑚𝑝

2 . 17 

𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 indicates the risk mitigation employed by the mainline lane driver to cautiously 18 

give way to the on-ramp driver in the case they merge earlier than expected. The kinetic 19 

energy variables are used to explain the ‘merge’ and ‘do not give way’ co-decision (equations 20 

1 and 4). Kinetic energy is thus used to represent the magnitude of crash consequences. 21 



10 

Arbis and Dixit 

The payoff functions assume that interacting drivers are also motivated by time savings in 1 

addition to minimising collision risks and consequences with each other. Motivation for time 2 

savings amongst mainline players is captured by the velocity differential variable 𝛥𝑉𝑙𝑚, 3 

describing the mainline lane vehicle’s desire to achieve a suitable car following velocity for 4 

its current leader.  It is also accounted amongst on-ramp players through 𝑑𝑜𝑛𝑟𝑎𝑚𝑝, whereby 5 

on-ramp drivers may choose to merge later to reach the front of mainline queues. Therefore 6 

as the interacting drivers are motivated beyond collision risks and consequences which affect 7 

both players, the game equilibrium is non-trivial (Liu et al. 2007).  8 

The decision models use remaining distance to the end of the acceleration lane as an 9 

explanatory variable, similar to Kita (1999) and Liu et al. (2007) who use remaining time. 10 

Remaining distance was chosen instead for this study as a large proportion of interaction 11 

observations had invalid remaining time values. That is, vehicles had deceleration values at 12 

decision time such that a complete stop would be achieved before reaching the end of the 13 

acceleration lane, and hence had infinite remaining time to reach the end of the acceleration 14 

lane. 15 

3.2 Model estimation and cross validation  16 

The expected utilities for decisions are used as arguments in logit functions to calculate the 17 

probability for choices (equations 5 and 6).  18 

𝑝𝑚𝑒𝑟𝑔𝑒 =  
𝑒−𝐸[𝑢𝑚𝑒𝑟𝑔𝑒(1−𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦)]

𝑒−𝐸[𝑢𝑑𝑜𝑛𝑜𝑡𝑚𝑒𝑟𝑔𝑒] + 𝑒−𝐸[𝑢𝑚𝑒𝑟𝑔𝑒(1−𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦)]
                                                                    [5] 19 

𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 =  
𝑒−𝐸[𝑢𝑔𝑖𝑣𝑒𝑤𝑎𝑦]

𝑒−𝐸[𝑢𝑑𝑜𝑛𝑜𝑡𝑔𝑖𝑣𝑒𝑤𝑎𝑦(𝑝𝑚𝑒𝑟𝑔𝑒)] + 𝑒−𝐸[𝑢𝑔𝑖𝑣𝑒𝑤𝑎𝑦]
                                                                  [6] 20 

The anticipations 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 in the expected costs (equations 1 and 4) are the same 21 

as the choice probabilities estimated by the logit models (equations 5 and 6). This is the 22 
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premise behind quantal response equilibrium; the perceived probability of other drivers’ 1 

choices are equal probability of drivers’ choices on average, however are subject to some 2 

error.  3 

Statistically computing 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 are thus fixed point problems of the type  4 

𝑝𝑚𝑒𝑟𝑔𝑒= F(𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦) and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 = H(𝑝𝑚𝑒𝑟𝑔𝑒), where F and H are functions. The 5 

probabilities 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 are solved iteratively, with seed values of 𝑝𝑚𝑒𝑟𝑔𝑒 and 6 

𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦  used in the expected utility functions to generate the first set of parameter 7 

estimates. The first set of parameter estimates are used as inputs for the logit models to 8 

generate new values of 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦. These generated values of 𝑝𝑚𝑒𝑟𝑔𝑒 and 9 

𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 are then used to update estimates of the parameters, and this method is iterated until 10 

the values of 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 are converged. 11 

The convergence in this case is a Logit QRE (McKelvey and Palfrey, 1995). Errors in driver 12 

perception against choices follow an extreme value distribution. In a Nash Equilibrium, the 13 

driver anticipations are correct and equal driver choices with no error. 14 

This logit fixed point QRE convergence method is also displayed in McKelvey and Palfrey 15 

(1995), Offerman et al. (1998) and Rogers et al. (2009).   16 

Maximum likelihood estimation is used to solve equations 5 and 6. The most likely parameter 17 

values of 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑏3 and 𝑏4 in the EU models are estimated jointly by 18 

maximising their fit against observed decisions in the calibration dataset.  19 

The maximum likelihood estimation procedure involved constructing expected utility indices 20 

(∇EU) from the above logit models. This index was the difference in expected utility between 21 

each of the binary choices. 22 

Expected utility index for the on-ramp driver decisions: 23 
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∇𝐸𝑈𝑚𝑒𝑟𝑔𝑒 = (𝐸𝑈𝑚𝑒𝑟𝑔𝑒 − 𝐸𝑈𝑑𝑜𝑛𝑜𝑡𝑚𝑒𝑟𝑔𝑒)                                                                                        [7] 1 

The log-likelihood to be maximised for the on-ramp driver decisions is thus: 2 

𝐿𝐿𝑜𝑛𝑟𝑎𝑚𝑝 = ln 𝐿( 𝑎0, 𝑎1, 𝑎2: 𝑦, 𝑋)                                                                                                       [8] 3 

= ∑ [ln (Ф(∇𝐸𝑈𝑚𝑒𝑟𝑔𝑒) × 𝑰(𝑦𝑖 = 1)) + ln ((1 −Ф(∇𝐸𝑈𝑚𝑒𝑟𝑔𝑒)) × 𝑰(𝑦𝑖 = 0))]

𝑖

                          [9] 4 

Expected utility index for the mainline driver decisions: 5 

∇𝐸𝑈𝑚𝑒𝑟𝑔𝑒 = (𝐸𝑈𝑚𝑒𝑟𝑔𝑒 − 𝐸𝑈𝑑𝑜𝑛𝑜𝑡𝑚𝑒𝑟𝑔𝑒)                                                                                      [10] 6 

The log-likelihood to be maximised for the mainline driver decisions is thus: 7 

𝐿𝐿𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 = ln 𝐿( 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4: 𝑦, 𝑋)                                                                                        [11] 8 

= ∑ [ln (Ф(∇𝐸𝑈𝑔𝑖𝑣𝑒𝑤𝑎𝑦) × 𝑰(𝑦𝑗 = 1)) + ln ((1 −Ф(∇𝐸𝑈𝑔𝑖𝑣𝑒𝑤𝑎𝑦) )  × 𝑰(𝑦𝑗 = 0))]

𝑗

               [12] 9 

Where 𝑦𝑖 and 𝑦𝑗 represent the binary choice of a player, I and J are indicator functions which 10 

take a value of 1 when the condition is satisfied and zero otherwise. X is a vector of traffic 11 

conditions during the lane changing interaction, derived from the NGSIM trajectory data. 12 

The parameters 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑏3 and 𝑏4 were all jointly estimated. The end result is a 13 

final log-likelihood to be maximised: 14 

𝐿𝐿 = 𝐿𝐿𝑜𝑛𝑟𝑎𝑚𝑝 + 𝐿𝐿𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒                                                                                                             [13] 15 

To estimate the impact of surrounding traffic conditions upon the model parameters, the ML 16 

analysis was generalised to allow the core parameters 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑏3 and 𝑏4 to be a 17 

linear function of them. The models are extended to be 𝑎𝑛 = 𝑎𝑛0 + 𝛽𝑛X and 𝑏𝑛 = 𝑏𝑛0 + 𝛼𝑛𝑿, 18 

where 𝑎𝑛0  and 𝑏𝑛0 are fixed parameters, 𝛽𝑛 and 𝛼𝑛 are vectors of effects associated the traffic 19 
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condition variables being represented by X (Table 2), and n = [0,1,2] for the on-ramp player 1 

and n = [0,1,2,3,4] for the mainline player. 2 

Cross-validation was performed to test the efficacy of the QRE framework to model the 3 

interactive decisions. The sample was split 70/30; 70% of observations were used for model 4 

calibration whilst 30% were used for verification testing. 5 

The fixed-point problem was first solved for the calibration sample. Once the probabilities  6 

𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 converged, the parameter values 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4 were used as 7 

inputs to the verification test sample. These 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4 values were made 8 

fixed and the 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 values were left to converge in the verification test 9 

sample. In this way, the QRE algorithm was followed for both the calibration and verification 10 

datasets. 11 

Cross-validation testing was performed 10 times (the sample was split randomly 70/30 ten 12 

times). It is important to note that an equal number of mainline players and on-ramp players 13 

were included in each calibration and verification dataset. 14 

15 
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4. DATA 1 

The decision models were calibrated against empirical trajectory data of vehicles travelling 2 

along a section of the Interstate 80 in Emeryville, California. This data was collected under 3 

the Next Generation simulation (NGSIM) program in April 2005. 45 minutes of trajectory 4 

was collected, and the whole of this dataset was utilised for the study in this paper.  5 

Figure 3 illustrates the data collection site, and provides a representation of the lane 6 

geometry. The on-ramp tapers to join the adjacent mainline lane, forming one lane. Adjacent 7 

to the on-ramp and outer mainline lane (not shown in Figure 3) is a shoulder lane. 8 

It is important to note the trajectory data was smoothed according to Thiemann et al. (2008) 9 

to address noise in the positional information. In particular, the NGSIM I-80 trajectory data 10 

exhibits unrealistic velocity and acceleration distributions with spikes present. The smoothing 11 

post-processing was performed before any data analysis.  12 

First, displacement values were differentiated to velocities and accelerations using symmetric 13 

difference quotients, then a symmetric exponential moving average filter was applied to these 14 

displacement, velocity and acceleration values. The smoothing times for displacement, 15 

velocity and acceleration were respectively 𝑇𝑥 = 0.5𝑠, 𝑇𝑣 = 1𝑠 and 𝑇𝑎 = 4𝑠 akin to 16 

Thiemann et al. (2008). 17 

There were 735 instances where an on-ramp vehicle passed a mainline vehicle on the 18 

adjacent lane. All instances where at least one of these vehicles was travelling less than 10km 19 

per hour were removed, as the model was to be calibrated by interactions at speed. Any driver 20 

interactions under this 10km/hr threshold speed were assumed irrelevant to unsafe throughput 21 

or significant give-way behaviour. Thus a total sample of 397 defined interactions was 22 

ultimately used. 23 
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 1 

FIGURE 3 Schematic representation of the on-ramp section, with lanes 1 to 6 marked. 2 

Measurements are in feet. Source: US DOT FHWA 3 

 4 

Descriptive statistics of the dataset are presented in Table 2. The variable values are collected 5 

at the time of interaction. 6 

  7 



16 

Arbis and Dixit 

TABLE 2 Descriptive statistics of the total sample; n=397 interactions, 794 players 1 

Variable Description Mean 
Standard 

deviation 

𝑑𝑜𝑛𝑟𝑎𝑚𝑝 The remaining distance between the front of the on-

ramp player to the end of the acceleration lane (m) 

45.35 22.96 

𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 The remaining longitudinal distance between the 

front of the mainline player to the of the acceleration 

lane (m) 

50.08 23.02 

𝑑𝑙𝑚 Distance between the leading vehicle on the mainline 

and the mainline player (m) 

10.30 7.03 

𝑣𝑜𝑛𝑟𝑎𝑚𝑝 Velocity of the on-ramp player (km/hr) 31.38 12.07 

𝑣𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 Velocity of the mainline player (km/hr) 16.65 6.57 

𝑣𝑙𝑒𝑎𝑑𝑒𝑟 Velocity of the leading vehicle on the mainline 

(km/hr) 

17.18 7.05 

𝛥𝑉𝑙𝑚 Velocity difference between the leading vehicle on 

the mainline and the mainline player 

0.52 4.07 

𝛥𝑉𝑜𝑚 Velocity difference between the on-ramp player and 

the mainline player (km/hr) 

14.73 9.56 

𝛥𝑉𝑙𝑜 Velocity difference between the leading vehicle on 

the mainline and the on-ramp player (km/hr) 

-14.20 10.87 

𝑎𝑜𝑛𝑟𝑎𝑚𝑝 Acceleration of the on-ramp player (m/s/s) -0.61 1.29 

𝑎𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 Acceleration of the mainline player (m/s/s) -0.13 0.88 

mainline_density An estimate of vehicle density on the mainline lane 

(vehicles/km). It is calculated based on distance 

headways between four vehicles on the mainline; two 

putative leaders and two putative followers with 

respect to the on-ramp player 

83.68 17.59 

Vehicle_length The length of a vehicle (m) 4.73 1.67 

motorcycle A binary variable taking the value 1 if the vehicle is a 

motorcycle; 0 otherwise 

0.001 0.04 

car A binary variable taking the value 1 if the vehicle is a 

car; 0 otherwise 

0.97 0.16 

truck A binary variable taking the value 1 if the vehicle is a 

truck; 0 otherwise 

0.02 0.15 

merge A binary variable taking the value 1 if the on-ramp 

player merged in the interaction; 0 otherwise 

0.390 0.488 

giveway A binary variable taking the value 1 if the mainline 

player gave way in the interaction; 0 otherwise 

0.539 0.499 

  2 
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5. RESULTS AND DISCUSSION 1 

TABLE 3 Parameter estimates of the full dataset 2 

 Coefficient Robust Std. Err z P>|z| 

𝒂𝟎  

constant -1.530955 0.40353 -3.79 0.000 

     

𝒂𝟏  

𝛥𝑉𝑙𝑜 0.00010 0.00003 4.13 0.000 

constant 0.00157 0.00063 2.47 0.014 

     

𝒂𝟐  

constant 0.04316 0.00649 6.65 0.000 

     

𝒃𝟎  

constant -4.93997 0.70767 -6.98 0.000 

     

𝒃𝟏  

𝑑𝑙𝑚 0.00027 0.00008 3.46 0.001 

constant -0.00998 0.00236 -4.23 0.000 

     

𝒃𝟐  

constant 0.03893 0.00894 4.35 0.000 

     

𝒃𝟑 

constant -0.17256 0.03903 -4.42 0.000 

     

𝒃𝟒 

constant 0.04088 0.01602 2.55 0.011 

 3 

The seed values of 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦  were chosen as 0.4 and 0.5 respectively. These 4 

values were closest to the observed mean decision probabilities in the full sample to the 5 

nearest 0.1.  6 

Given these initial values the QRE fixed point problem was iterated through 10 times to have 7 

the probabilities  𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 converge. The full sample, and each of the calibration 8 

and verification datasets were subject to the convergence. 9 

Each of the 70% calibration samples had estimated values of model parameters, signs and 10 

significance levels consistent with those estimated using the full 100% sample. These sets of 11 

parameter results from each of the training samples are displayed in the Appendix. Therefore 12 
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the estimates of model parameters using the full sample are used for discussion of parameter 1 

results. 2 

Further, the impact of vehicle trajectories upon game theoretic driver interactions apart from 3 

individual manoeuvres is displayed in Figures 4 to 10.  These charts illustrate the elasticity of 4 

QRE model probabilities to merge and give-way estimated using the full sample. 5 

Standardised values of trajectory variables (determined by (𝑋 −  𝑏)/𝑎, where 𝑋 is the trajectory 6 

variable value,  𝑏 is its average and 𝑎 is the range) are plotted against 𝑝𝑚𝑒𝑟𝑔𝑒 and 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦, 7 

bracketed at 10% intervals. 8 

The kinetic energy parameter 𝑎1 exhibits heterogeneity when subject to effects from 𝛥𝑉𝑙𝑜, 9 

and similarly so does kinetic energy parameter 𝑏1 with  𝑑𝑙𝑚 (Table 3). The effect associated 10 

with 𝛥𝑉𝑙𝑜 against 𝑎1  suggests that for a given kinetic energy of on-ramp players, greater 11 

relative velocity of putative mainline leaders provides further utility to merge. This result is 12 

coherent with speed of leaders on the mainline reducing rear-end crash probability and 13 

magnitude of crash consequences for on-ramp vehicles looking to merge.  14 

Amongst mainline players, the parameter for kinetic energy 𝑏1 being heterogeneous with 𝑑𝑙𝑚  15 

suggests for a given kinetic energy, greater gap distance to leading vehicles lowers the 16 

probability to give-way. This may be occurring as mainline players desire to maintain a 17 

suitable car-following distance with mainline leaders, ultimately providing greater utility to 18 

‘do not give-way’. 19 

The net effect of on-ramp player kinetic energy upon interactions is shown in Figure 4. 20 

Higher kinetic energy is correlated to harmonised merge give-way behaviour with 𝑝𝑚𝑒𝑟𝑔𝑒 <21 

𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 , whereas at lower kinetic energies interactions are incoordinate with 𝑝𝑚𝑒𝑟𝑔𝑒 > 22 
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𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 . This may occur as mainline players are less intimidated by slower on-ramp 1 

vehicles, whilst on-ramp vehicles are more likely to merge at these lower speeds. 2 

The parameters 𝑎2 and 𝑏2 describing remaining distance to the end of the acceleration lane 3 

are both positive. On-ramp vehicles prefer to merge later towards the end of the acceleration 4 

lane, whereas mainline players look to give-way earlier. This represents an incoordination, 5 

visualised in Figures 6 and 7 where at smaller remaining distances 𝑝𝑚𝑒𝑟𝑔𝑒 > 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦 . On-6 

ramp vehicles may prefer to merge later along the acceleration lane as they look to move up 7 

to the front of mainline queues. 8 

A negative coefficient for 𝑏3 indicates mainline players are less likely to give-way with 9 

greater relative velocity amongst their leading vehicle. Mainline players desire to maintain a 10 

suitable car-following velocity which affects their give-way behaviour. Concurrently, greater 11 

relative velocity of leading mainline vehicles may encourage on-ramp players to merge as 12 

they anticipate gaps (𝑝𝑚𝑒𝑟𝑔𝑒 > 𝑝𝑔𝑖𝑣𝑒𝑤𝑎𝑦  in Figure 9). An indication is uniform mainline 13 

speeds encourages safer interaction. 14 

Relative speeds between on-ramp and mainline players also impact the safety of interactions, 15 

with Figure 10 displaying conflicts at lower relative velocity. 16 

 17 
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FIGURE 4 Impact of 𝑣𝑜𝑛𝑟𝑎𝑚𝑝
2  upon merge give-way interactions 1 

 2 

FIGURE 5 Impact of 𝑣𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒
2  upon merge give-way interactions 3 

 4 

FIGURE 6 Impact of 𝑑𝑜𝑛𝑟𝑎𝑚𝑝 upon merge give-way interactions 5 
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 1 

FIGURE 7 Impact of 𝑑𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 upon merge give-way interactions 2 

 3 

FIGURE 8 Impact of 𝛥𝑉𝑙𝑚 upon merge give-way interactions 4 
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 1 

FIGURE 9 Impact of 𝛥𝑉𝑙𝑜 upon merge give-way interactions 2 

 3 

FIGURE 10 Impact of 𝛥𝑉𝑜𝑚 upon merge give-way interactions 4 
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verification testing data arrived by using parameter values from the training data were used to 1 

determine the expected number and variance of decisions in the verification testing datasets. 2 

The expected number was the number of defined interactions multiplied by the decision 3 

probability (Np). The standard deviation in number of decisions was calculated as 4 

√𝑁𝑝(1 − 𝑝). The expected output was compared to reality. 5 

TABLE 4 Comparison of observed equilibrium with QRE. The averaged results derived 6 

from ten verification test datasets are presented below. 7 

 
On-ramp player merge decisions 

(# of interactions = 119) 

Mainline player give way 

decisions (# of interactions = 

119) 

Equilibrium 
Average 

expected 
Average stdev 

Average 

expected 
Average stdev 

Observed 45.30 5.27 23.00 4.30 

QRE 44.67 5.27 25.44 4.47 

 8 

The QRE was able to accurately estimate the expected number and standard deviation in 9 

interactive decisions. It is demonstrated that a QRE framework can be used effectively to 10 

model operational decisions in aggregate. Dixit and Denant-Boemont (2014) were able to 11 

show that Strategic User Equilibrium (analogous to Quantal Response Equilibrium for 12 

strategic decisions) is able to likewise model mean and variability in strategic route choice 13 

decisions. 14 

  15 
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6. CONCLUSION 1 

The aim of this paper was to assess Quantal Response Equilibrium as a game solution for 2 

interactions in lane changing manoeuvres. Prior studies of interaction in manoeuvring 3 

decisions have pre-eminently assumed Nash equilibrium solutions to behaviour, with one 4 

study testing Quantal Response Equilibrium (Barmpounakis et al., 2016). The Quantal 5 

Response Equilibrium approach adopted in the study in this paper inter-relates the utilities of 6 

player decisions, and calculates game payoff functions simultaneously as game solutions are 7 

arrived. In this way, values for payoff functions explicitly reflect interactions instead of only 8 

individual decisions. 9 

QRE assumes drivers have stochastic instead of deterministic perceptions of competing 10 

players’ decisions. This differentiates QRE from Nash Equilibrium. In particular, the 11 

equilibrium modelled in the study was that of merging and give way decisions at a freeway 12 

on-ramp. The calibration and verification data used against the proposed model was the 13 

NGSIM trajectory dataset collected in April 2005 (Federal Highway Administration, 2006). 14 

The lane changing interactions were identified in the trajectory dataset using an automated 15 

manner.  16 

The decision models developed in the study incorporate incentives for time savings, and 17 

collision avoidance. Therefore as players are motivated beyond collision risks, the QRE 18 

equilibrium game solution achieved is non-trivial (Liu et al. 2007). 19 

The parameter estimation approach allowed for payoff function parameter estimates to be 20 

heterogeneous across trajectory variable effects, allowing for interaction insights across these 21 

effects. In particular, the study found that interactions were affected by velocities and gap 22 

distances in the mainline. Mckelvey et al. (2000) and Rogers et al. (2009) adopt a similar 23 
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approach where behavioural attributes across agents are allowed to be heterogeneous, finding 1 

improved QRE model estimation. 2 

The study finds through cross-validation testing that QRE is able to accurately model not 3 

only means but also variance in choices. It demonstrates QRE as a suitable theoretical 4 

framework to model operational decision making. QRE takes into account errors in 5 

perception of other drivers’ payoffs, whether they are caused by mistakes in judgement or 6 

lack of vision. With the advent of V2V and V2I communication technologies to improve 7 

driver awareness, future studies may test QRE game solutions to model their improvements 8 

to driver perceptions and safety. 9 

This study builds upon the existing methods to mathematically calculate game solutions in 10 

driver manoeuvres. Future studies may investigate applying QRE as a game solution for 11 

modelling interaction in a range of driving scenarios. 12 

Limitations in this study include those elements of game model formulation highlighted by 13 

Zhang et al. (2010). These are the identification of players and their strategy sets. For one, the 14 

number of interacting players analysed in this study was only two, however future research 15 

may consider more players. Mainline players could have their game strategy set expanded to 16 

include a manoeuvre ‘change lane’ as in Talebpour et al. (2015), ancillary to their 17 

acceleration behaviour. However, limitations in the number of explanatory variables in the 18 

dataset and the data sample size were barriers to its inclusion. 19 

Furthermore, defining the time of an interaction instance and what qualifies as an action is an 20 

arbitrary practice within game theoretic research for driving manoeuvres. Establishing 21 

definitions that yield the best model fit to reality is integral. Future studies for instance may 22 

investigate alternative timings to define when an interaction takes place, such as when the 23 

front of the on-ramp vehicle matches the same longitudinal position as the mainline vehicle.  24 
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Moridpour et al. (2010) mentions it is important to improve lane changing decision models 1 

for trucks. In the full sample used for the investigation presented in this paper, only 19 trucks 2 

were observed out of 794 total vehicles which rendered insignificant any statistical analyses 3 

for the subgroup. If the sample size were large enough in the dataset for trucks, their 4 

parameter values for interactive merge or give way decisions could easily be made as 5 

heterogeneous effects with the model estimation method presented within this chapter. 6 

Subsequent investigations may test for statistical differences in truck interactive behaviour 7 

compared to other vehicle classes if vehicle trajectory datasets include large enough samples. 8 

  9 
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APPENDIX Parameter estimates of the 10 training datasets 1 

 
𝒂𝟎 

 

𝒂𝟏 
 

𝛥𝑉𝑙𝑜  

(vector of 

effect for  
𝒂𝟏) 

 

𝒂𝟐 
 

𝒃𝟎 
 

𝒃𝟏 
 

𝑑𝑙𝑚 (vector 

of effect for  
𝒃𝟏) 

 

𝒃𝟐 
 

𝒃𝟑 
 

𝒃𝟒 
 

1 -1.075221** 0.0028097* 0.0001513* 0.0398763* -4.272658* -0.0087288* 0.0002435* 0.0319793* -0.13841* 0.036291** 

2 -0.9705581** 0.0024342* 0.0001215* 0.0407284* -5.519255* -0.0140168* 0.0006422* 0.0473344* -0.1371338* 0.0449081** 

3 -1.633824* 0.0015744** 0.0001108* 0.0496235* -5.092362* -0.010291* 0.0002719* 0.0424085* -0.1933731* 0.0339948*** 

4 -1.293333* 0.0018427** 0.0001175* 0.0364012* -5.061979* -0.0099956* 0.0002349* 0.0385667* -0.1679707* 0.0431448** 

5 -1.305078* 0.0017756** 0.0001041* 0.0396278* -4.204278* -0.0086193* 0.0002676* 0.03176* -0.1655011* 0.02888 

6 -1.962715* 0.001185*** 0.0000918* 0.0492981* -5.160431* -0.0099157* 0.0003275** 0.0365974* -0.21866* 0.0609013* 

7 -1.781591* 0.0014233** 0.0000855* 0.048948* -4.452004* -0.0104964* 0.0004486** 0.0323207* -0.1682229* 0.0406523** 

8 -1.524949* 0.0015176*** 0.0000966* 0.0484909* -4.658318* -0.0073638** 0.0001868*** 0.0386258* -0.1567176* 0.0382055** 

9 -1.323212* 0.0021935* 0.0001274* 0.04126* -4.909822* -0.0125107* 0.0004136* 0.0345682* -0.2114646* 0.043576** 

10 -1.908911* 0.00120 0.0000916* 0.0514509* -4.743899* -0.0099046* 0.0002643** 0.0392787* -0.172561* 0.0319741*** 
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***0.10 significance level 3 

**0.05 significance level 4 

*0.01 significance level 5 


